
Within the complex systems devel-
oped throughout the aerospace

industry, software is playing an increasing-
ly important role in mission success.
Methods for developing and assuring
software are often not well understood
by program managers and, thus, are
often simply ignored. In such a case,
ignorance is far from bliss; it is danger-
ous. During the past few years, NASA has
emphasized the faster, better, and cheap-
er approach to developing missions,
thereby making it more important than
ever to ensure the quality of its software
products. It is this imperative that makes
the role of Software Quality Assurance
(SQA) critical in the short term, but also
linked to mission success in the long
term.

Assuring software quality requires
that engineering knowledge and disci-
pline be applied at all phases of the devel-
opment life cycle. And just as with hard-
ware, the final step in developing quality
products culminates in rigorous testing
before release. Quality assurance engi-
neers are also required to possess suffi-
cient domain knowledge to evaluate the
completeness and correctness of system
requirements, and they must have the
ability to determine whether the design
has incorporated all requirements accu-
rately. Ultimately, these specialists are
responsible for advising management
when or whether a product is reliable and
meets quality standards.

This article starts by discussing what
is meant by SQA. It then discusses the
aspects of how software quality assur-
ance is applied to both the products and
the process. The article continues with
some of the major components of soft-
ware assurance. Software metrics are used
to help numerically determine the quality
of the products, noting they are underuti-
lized and often poorly understood.
Another area of quality assurance not
well understood is independent verifica-
tion and validation (IV&V); this article

will touch briefly on the role it plays in
quality assurance. Finally, it discusses the
ways in which software safety and relia-
bility are assessed from a quality perspec-
tive. These two areas are often neglected
despite their critical role in mission suc-
cess.

Definitions
Software quality assurance is a combina-
tion of three concepts: quality, software
quality, and software quality assurance.

While the terms are often used inter-
changeably, we need to understand the
basics of quality before we can under-
stand the components and problems of
software quality assurance.

Quality Defined
Before defining software quality, we need
to define what is meant by quality. The
Institute of Electrical and Electronics
Engineers’ (IEEE) Standard Glossary of
Software Engineering Terminology defines
quality as “the degree to which a system,
component, or process meets (1) speci-
fied requirements, and (2) customer or
user needs or expectations [1].” The
International Standards Organization
(ISO) defines quality as “the totality of
features and characteristics of a product
or service that bear on its ability to satis-
fy specified or implied needs [2].” IEEE
and ISO definitions associate quality

with the ability of the product or service
to fulfill its function. This is achieved
through the features and characteristics
of the product.

While this definition seems to be
clear and unambiguous, the concept of
quality really is not. Kitchenham states
quality is “hard to define, impossible to
measure, easy to recognize [3].” Gillies
states that “Quality is generally transpar-
ent when present, but easily recognized
in its absence [4].”

Therefore, while we can define quali-
ty in theory, in practice, and in use, an
absolute definition is elusive.

Software Quality Defined
Software quality is defined in the
Handbook of Software Quality Assurance in
multiple ways but concludes with this
definition: “Software quality is the fitness
for use of the software product [5].” This
definition implies the evaluation of soft-
ware quality related to the specification
and application of software quality.
There are, however, criteria that help in
the evaluation of software quality. For
each project, the appropriate criteria
need to be identified for the environ-
ment.

Two of the most often-cited models
applying the criteria are the GE model
proposed by McCall, which was later
adapted by Watts, and the Boehm model
[4]. Below is a combined list of defini-
tions of quality criteria for software.
• Correctness: extent to which a pro-

gram fulfills its specifications.
• Efficiency: use of resources execu-

tion and storage.
• Flexibility: ease of making changes

required by changes in the operating
environment.

• Integrity: protection of the program
from unauthorized access.

• Interoperability: effort required to
couple the system to another system.

• Maintainability: effort required to
locate and fix a fault in the program
within its operating environment.

22 CROSSTALK The Journal of Defense Software Engineering May 2002

What is Software Quality Assurance?

Dr. Linda H. Rosenberg
NASA

Software directly impacts not only mission success but also mission safety. Software
Quality Assurance (SQA) is critical to the success of every mission at NASA, but the
roles and responsibilities are often misunderstood. SQA covers all phases of the software
development process, including safety, reliability, independent verification and validation,
and metrics. The purpose of this article is to help the reader understand software quality
assurance.

Thursday, 2 May 2002
Track 7: 9:00 - 9:40

Room 251 A - C

“In the real work of
software development,

criteria for quality
are identified and
applied to differing

extents as a result of
trade-off decisions.”

• Portability: effort required to transfer
a program from one environment to
another.

• Reliability: ability not to fail.
• Reusability: ease of re-using software

in a different context.
• Testability: ease of testing the pro-

gram to ensure that it is error-free
and meets its specification.

• Usability: ease of use of the software.
In a perfect world all of these criteria

would be met, but software is not devel-
oped or run in such a world, and trade-
offs are a part of all development proj-
ects. Often the most efficient software is
not portable, as portability would require
additional code, decreasing the efficiency.
Usability is subjective and varies depend-
ing on the system users. When using the
above criteria to define the assurance
objectives of a software system, the pur-
pose and use of the system must be
taken into account. In the real work of
software development, criteria for quality
are identified and applied to differing
extents as a result of trade-off decisions.

Software Quality Assurance Defined
Again referencing IEEE, quality assur-
ance is defined as “a planned and system-
atic pattern of all actions necessary to
provide adequate confidence that an item
or product conforms to established tech-
nical requirements [1].” This definition
needs to be adapted to software taking
into account that, unlike hardware sys-
tems, software is not subject to wear or
physical breakage; consequently, its use-
fulness over time remains unchanged
from its condition at delivery. Software
quality assurance must be a systematic
effort to improve the delivery condition.
In the Handbook of Software Quality
Assurance, the following definition is
given: “Software quality assurance is the
set of systematic activities providing evi-
dence of the ability of the software
process to produce a software product
that is fit to use [5].” These activities are
evaluated in part against the above criteria
and measured as described in a later sec-
tion of this article.

Software Quality Assurance
Applied
The focus, therefore, of SQA is to mon-
itor continuously throughout the soft-
ware development life cycle to ensure the
quality of the delivered product. This
requires monitoring both the processes
and the products. In process assurance,
SQA provides management with objec-
tive feedback regarding compliance to

approved plans, procedures, standards,
and analyses. Product assurance activities
focus on the changing level of product
quality within each phase of the life
cycle, such as the requirements, design,
code, and test plan. The objective is to
identify and eliminate defects throughout
the life cycle as early as possible, thus
reducing test and maintenance costs.

Process Assurance
It has been proven that the use of stan-
dards and process models has a positive
impact on the quality of the final soft-
ware. The purpose of standardization of
SQA ensures that there is discipline and
control in the software development
process via independent evaluation [5].
ISO 9000 provided a way to gain external
accreditation for a quality management
system. Many companies have used the
application of ISO to software, but the
complaint is that it tends to fossilize pro-
cedures rather than encourage process
improvement [4].

One of the most common software
development models is the Software

Engineering Institute’s Capability
Maturity Model® (CMM®), which has
recently developed into the CMM
IntegrationSM (CMMISM). The basic prem-
ise underlying both CMM and CMMI is
that the quality of the software product
is largely determined by the quality of
the software development and mainte-
nance processes used to build it [6].

Many commercial standards are also
found in common practice for software
development. Many organizations such
as The Department of Defense and
NASA have, in the past, developed their
own standards for software develop-
ment, but recently have embraced the
use of commercial standards instead. It
is now NASA’s policy to use commercial
standards whenever possible, thus
encouraging more standardization not
only across NASA but within industry
also.

Product Assurance
At NASA’s Goddard Space Flight Center
(GSFC), software quality assurance is
carried out by an independent group of
people whose sole function is to monitor
quality implementation. The Assurance
Management Office recently created a
list of tasks that SQA should perform
during each phase of the software devel-
opment life cycle. This list is comprehen-
sive and starts in the concept phase of a
proposed project and concludes with the
operations and maintenance phase. For
example, in the concept phase, SQA
should generate and/or assist in the
development/review of various pro-
gram/project plans, including but not
limited to project management plans,
subcontract management, etc. In the
requirements phase, SQA should obvi-
ously generate and/or assist in the gener-
ation of requirements, but it should also
do activities such as observing, witness-
ing and/or participating in prototyping
activities.

To accomplish all of these tasks
would be an ideal set of SQA activities
on a project, but projects rarely have suf-
ficient funds or need to perform them
all. For most projects, the amount of
SQA to be applied is negotiated based on
the purpose, degree of mission risk, and
the funding level of the project. This
negotiation is critical to the success of
SQA. In the following sections, I will dis-
cuss four activities in which SQA must
participate during all phases: metrics,
IV&V, safety, and reliability.

Metrics
Software metrics are often ignored dur-
ing the early software development life-
cycle phases and are not an activity gen-
erally associated with SQA – but should
be. For SQA practitioners, with their
responsibility for assuring both the
processes and products of the software
development, measurement is critical.
Throughout each of the life-cycle phases,
metrics can be used to help in the evalu-
ation.

The Software Assurance Technology
Center (SATC) at GSFC has identified
relevant metrics that can help projects
better evaluate the quality of their prod-
ucts at fixed points within their develop-
ment. For example, SATC developed a
tool that derives metric information by
analyzing requirement specification doc-
uments. Known as Automated Require-
ments Measurement,1 this tool provides
indicators of the quality of the require-
ments set. The tool’s objective is to iden-
tify terms within the text that may cause

What is Software Quality Assurance?

May 2002 www.stsc.hill.af.mil 23

“It has been proven
that the use of

standards and process
models has a

positive impact on the
quality of the

final software.”

requirements to be ambiguous and hence
difficult to test and to identify any
requirements that are incomplete [7].

It is up to the SQA organization to be
cognizant of available and relevant met-
rics that help evaluate and assure prod-
ucts. When projects consistently use soft-
ware metrics as part of their develop-
ment, the SQA team needs only to vali-
date the metrics and ensure the correct
data interpretation. If a project is not
employing metrics, however, then it is the
responsibility of SQA to encourage, and
perhaps facilitate, their use or to develop
an independent metrics program for suf-
ficient insight into the development.

Independent Verification and Validation
IV&V is defined by three components; it
must be independent technically, manage-
rially, and financially. IV&V must priori-
tize its own efforts, identifying where to
focus its activities. It must have a clear
reporting route to the program manage-
ment, and the budget for these efforts
must be allocated and controlled by the
program. Control must occur at a level
that is independent of the development
organization such that the effectiveness
of the IV&V activity is not compromised.

Verification is defined as the process
of determining whether or not the prod-
ucts of a given phase of the software
development cycle fulfill the requirements
established during the previous phase, i.e.,
whether or not it is internally complete,
consistent, and correct enough to support
the next phase. Validation is the process
of evaluating software throughout its
development process to ensure compli-
ance with software requirements.
Verification often asks the question, “Are
we building the product right?” Validation
asks, “Are we building the right product?”

NASA has a facility in West Virginia
whose primary purpose is the accom-
plishment of IV&V. Without SQA, IV&V
is expensive and often less effective.
Where SQA is a broad blanket across the
project, overseeing all process and prod-
uct activities, including software, IV&V
focuses on only those processes and
products determined to have the highest
risk and does an in-depth evaluation of
them.

Safety
Safety is a team effort and is everyone’s
responsibility. Software is a vital part of
the system. Project managers, systems
engineers, software leads and engineers,
software assurance or quality assurance
(QA), and system safety personnel all play
a part in creating a safe system. Safety-crit-

ical software is defined by the NASA
Software Safety Standard as “Software
that directly, or indirectly, contributes to
the occurrence of a hazardous system
state, controls or monitors safety critical
functions, runs on the same system as
safety critical software or impacts systems
that run safety critical software, or handles
safety critical data [8].” The goal is for the
QA activity to ensure that software con-
tributes to the safety and functionality of
the whole system.

When a device or system could possi-
bly lead to injury, death, or the loss of
vital (and expensive) equipment, system
safety is always involved. Often hardware
devices are used to mitigate the hazard
potential or to provide a fail-safe mecha-
nism should the worst happen. As soft-
ware becomes a larger part of electro-
mechanical systems, hardware hazard

controls are being replaced or backed up
by software controls. Software has the
ability not only to detect certain types of
error conditions more quickly than hard-
ware but also to respond more intelli-
gently, thereby avoiding a potentially haz-
ardous state. The increased reliance on
software means that the safety and relia-
bility of the software become vital com-
ponents in a safe system [8].

Reliability
IEEE defines software reliability as “The
probability that software will not cause
the failure of a system for a specified time
under specified conditions. The probabil-
ity is a function of the inputs to and use
of the system, as well as a function of the
existence of faults in the software [9].”
Using this definition, expectations of reli-
ability must be based on how the system
is to be used and for what length of time.
At NASA, many of our satellites fly for

multiple years; the reliability of their soft-
ware must support the expected lifetime.
The conditions of that software’s use will
be specified by the satellite’s mission.

IEEE continues to define software
reliability management as “The process of
optimizing the reliability of software
through a program that emphasizes soft-
ware error prevention, fault protection
and removal, and the use of measure-
ments to maximize reliability in light of
project constraints such as resources,
schedule, and performance [9].” This def-
inition puts the burden of reliability not
just on the testing phase, but on the entire
life cycle to ensure errors are prevented
starting in the requirements phase deter-
mining the quality of such attributes as
phrasing, completeness, and clarity.
Throughout the life cycle, errors should
be detected and removed using such tech-
niques as code walkthroughs and inspec-
tions. Relevant measurements should be
used at all phases to ensure the effective-
ness of all assurance activities. In the test-
ing phase, reliability can be evaluated
using one of the many reliability models.
These models, however, must be applied
with very strict rigor to ensure accuracy.

It is the responsibility of the SQA
organization to ensure that reliability is
continuously promoted and evaluated
throughout the life cycle as specified
above. Quality cannot be tested in at the
end of a project; it must be built in as the
software is being developed. Reliability
also impacts safety – a system cannot be
deemed safe if it is not reliable.

Conclusion
SQA is faced with many challenges start-
ing with the method of defining quality
for software. There needs to be a common
understanding as to what is high-quality
software, but the software usage environ-
ment usually influences the final defini-
tion. There are many aspects of SQA,
from those within the phases of the soft-
ware development life cycle to those that
span multiple phases, i.e., safety, reliability,
and IV&V. SQA is a very complex area
that is critical to the ultimate success of a
project; it is also one that requires a rather
diverse set of skills. New knowledge areas
such as software safety and reliability are
now being added to the core set of
required skills. Finally, SQA must be inde-
pendent from development organizations
to be successful.◆

References
1. IEEE Std 610.12-1990. Glossary of

Software Engineering Terminology.
Institute of Electrical and Electronics

Software Engineering Technology

24 CROSSTALK The Journal of Defense Software Engineering May 2002

“When projects
consistently use software
metrics as part of their
development, the Soft-
ware Quality Assurance

team needs only to
validate the metrics and

ensure the correct
data interpretation.”

May 2002 www.stsc.hill.af.mil 25

Engineers, Inc., 1990.
2. ISO 9003-3-1991. Quality Manage-

ment and Quality Assurance Stan-
dards, Part 3: Guidelines for the
Application of ISO 9001 to the
Development, Supply and Mainten-
ance of Software. International
Standards Organization, 1991.

3. Kitchenham, Barbara, and Shari
Lawrence Pfleeger. “Software Quality:
The Elusive Target.” IEEE Software
13, 1, Jan. 1996: 12-21.

4. Gillies, Alan C. Software Quality,
Theory and Management. Inter-
national Thomson Computer Press,
1997.

5. Schulmeyer, G. Gordon, and James I.
McManus. Handbook of Software
Quality Assurance, 3rd ed. Prentice
Hall PRT, 1998.

6. Software Engineering Institute. Capa-
bility Maturity Model. Carnegie Mellon
University, 1991.

7. Wilson, W., L. Rosenberg, and L.
Hyatt. “Automated Quality Analysis of
Natural Language Requirement Speci-
fications.” Proceedings of the 14th
Annual Pacific Northwest Software
Quality Conference, Portland, Ore.,
1996.

8. NASA-STD-8719.13A. NASA Soft-
ware Safety Standard. NASA, 2001.

9. IEEE Std 982.2-1988. Guide for the
Use of Standard Dictionary of
Measures to Produce Reliable Soft-

ware. Institute of Electrical and
Electronics Engineers, Inc., 1988.

Note
1. Available on the SATC Web site at

no cost, see <http://satc.gsfc.nasa.
gov>.

About the Author
Linda H. Rosenberg,
Ph.D., serves as the
chief scientist for Soft-
ware Assurance for
Goddard Space Flight
Center, NASA. She is a

recognized international expert in the
areas of software assurance, software
metrics, requirements, and reliability.
Dr. Rosenberg has a doctorate degree
in computer science, a master’s of engi-
neering science degree in computer sci-
ence, and a bachelor’s of science
degree in mathematics.

Office of Systems Safety and
Mission Assurance
Goddard Space Flight Center,NASA
Building 6 Code 300
Greenbelt, MD 20771
Phone: (301) 286-0087
Fax: (301) 286-1667
E-mail: linda.h.rosenberg@

gsfc.nasa.gov

What is Software Quality Assurance?

Get Your Free Subscription

Fill out and send us this form.

OO-ALC/TISE

7278 Fourth Street

Hill AFB, UT 84056-5205

Fax: (801) 777-8069 DSN: 777-8069

Phone: (801) 775-5555 DSN: 775-5555

Or request online at www.stsc.hill.af.mil

NAME:__

RANK/GRADE:___

POSITION/TITLE:__

ORGANIZATION:___

ADDRESS:__

__

BASE/CITY:__

STATE:___________________________ZIP:___________________________________

PHONE:(_____)___

FAX:(_____)___

E-MAIL:___@_________________________

CHECK BOX(ES) TO REQUEST BACK ISSUES:

MAY2000 " THE F-22

JUN2000 " PSP & TSP

APR2001 " WEB-BASED APPS

JUL2001 " TESTING & CM

AUG2001 " SW AROUND THE WORLD

SEP2001 " AVIONICS MODERNIZATION

DEC2001 " SW LEGACY SYSTEMS

JAN2002 " TOP 5 PROJECTS

MAR2002 " SOFTWARE BY NUMBERS

APR2002 " RISKY REQUIREMENTS

STSC JOVIAL Services Can Help You
Put the Pieces Together With:
• SPARC Hosted-MIPS R4000 Targeted JOVIAL Compiler
• SPARC Hosted-PowerPC Targeted JOVIAL Compiler
• Windows 95/98/ME/NT (WinX) Compiler
• Use of Licensed Software for Qualified Users
• 1750A JOVIAL ITS Products
• Computer Based Training
• On-Line Support

Our services are free to members of the Department
of the Defense and all supporting contractors. Just give
us a call.

If you have any questions, or require more information,
please contact the Software Technology Support Center.

JOVIAL Program Office
Kasey Thompson, Program Manager • 801 775 5732 • DSN 775 5732
Dave Berg, Deputy Program Manager • 801 777 4396 • DSN 777 4396
Fax • 801 777 8069 • DSN 777 8069 • Web Site • www.jovial.hill.af.mil

JOVIAL GOT
YOU PUZZLED?

